

PM Hot-spot Modeling: Lessons Learned in the Field

Chris Owen
U.S. EPA

EPA RSL Modelers' Workshop Wednesday, May 21st, 2014

Overview

- Background
- State and local lessons learned so far
- EPA resources

Conformity Requirements

- CAA and transportation conformity rule (40 CFR Part 93) require that federally supported transportation projects in nonattainment and maintenance areas cannot:
 - » Cause or contribute to new air quality violations,
 - » Worsen existing violations, or
 - » Delay timely attainment of the NAAQS or interim milestones
- A hot-spot analysis is an estimation of likely future localized pollutant concentrations and a comparison to the CO, PM_{2.5}, and PM₁₀ NAAQS
 - » In PM areas, required for major new or expanded highways, intersections, or terminals that significantly increase diesel traffic
- A project meets conformity, if at each appropriate receptor:
 - PM concentration of build ≤ NAAQS, or
 - PM concentration of build < PM concentration of no-build

EPA Guidance

- In December 2010, EPA released original PM Hot-spot Guidance
 - » Developed through Agency-wide effort and stakeholder involvement
 - » EPA's November 2013 guidance update supersedes the 2010 guidance
- Provides first-of-its-kind method for estimating air quality impacts of specific transportation projects
 - ➤ Emissions from EPA's MOVES model→ input to AQ model (AERMOD)
 - » Estimate a project's impact on air quality concentrations
 - » Relevant for other modeling applications

Example of Project Needing a PM Hot-spot Analysis

Characterizing Emission Sources

	Line Source	Point Source	Area Source	Volume Source
Different source types can be used in a hot- spot analysis to represent	Highways and intersections	Bus garage or transit terminal exhaust stacks	Transit or freight terminalsParking lotsHighways and intersections	
Model	AERMOD* CAL3QHCR	AERMOD	AERMOD	

Note: Only approved versions of models on SCRAM can be used for PM hot-spot Guidance Reference:

analyses

Sect 7.3.2, 7.4, App J.3.3-3.5

^{*}AERMOD can simulate line sources using a series of adjacent area or volume sources.

Air Quality Modeling Issues in Field

- Characterizing area and volume sources
- Specifying receptors in project area
- Running the air quality model
- Note: Interagency consultation has been important for determining appropriate air quality model, methods, and data

Area Source Characterization

Area Source Characterization

- Most projects will include many roadway links
- Area sources may be easier to use:
 - » (X₁Y₁),(X₂,Y₂) defined for each source
- GIS software is essential for this process

A Highway Link as a Series of **Volume** Sources

- Xs, Ys = Coordinates of volume source center
- Syinit = Initial lateral dispersion coefficient (W / 2.15)
- Szinit not shown

Volume Sources

Issues to consider when using volume sources:

1. Source width

2. Spacing

Volume Sources: Appropriate Width

- Receptors should not be placed within exclusion zone
 - » based on EPA guidance from OAQPS
 - concentrations are not calculated within it
- Receptors <u>should</u> be sited as near as 5 m from a source (e.g., the edge of a traffic lane)
- Because of the exclusion zone, the width of a volume source should be < 8 m
 - » Typical highway lane = 12 ft (3.6 m)
- Model any 3 lane or larger highway using
 - » Volume sources for each lane, or
 - » Area sources

Incorrect Volume Source Width

- Volume sources are too wide, excluding area where receptors should be placed
- W = Link width

Correct Volume Source Width

- Volume sources are no more than 8 m wide
 - » Receptor A is no longer in the exclusion zone

Incorrect Volume Source Spacing

 Volume sources are spaced too far apart, which creates a nonuniform emission characterization

Correct Volume Source Spacing

Adjacent volume sources, spaced properly, create an even emissions characterization

Running the Model

- Hot-spot analyses may cover large geographic areas (e.g., a 15 mile long highway expansion) and include hundreds of sources and potentially thousands of receptors
- EPA recommends the following strategy to minimize AERMOD run-times:
 - » Modeling the areas of highest likely impact:
 - May be evident from traffic volumes, emission rates
 - Can be determined from an iterative modeling process (using FASTALL and/or coarse receptor grid)
- Some users have expressed interest in parallel processing
 - » Use of commercial software is covered in a Dec 2007 EPA clarification memo
 - Decisions on the use of third-party software is the EPA Region's responsibility

MOVES2AERMOD

- EPA created an interface between the MOVES emission model and the AERMOD dispersion model
- Designed specifically for use in PM Hot-spot Analyses –
 Available only for Area sources at this time
 - » Uses output from 16 MOVES runs (representative time periods)
 - » Produces SEASONHR EMISFACT table that can be used directly in an AERMOD input file
- Script can be run through the MOVES GUI
- Download package available on the MOVES Tools website: http://www.epa.gov/otaq/models/moves/tools.htm

For More Information

- See EPA's conformity project-level website for:
 - » Regulations, policy guidance, FR notices, training
 - » www.epa.gov/otaq/stateresources/transconf/projectlevel-hotspot.htm
- See EPA's MOVES website for:
 - » Software, MOVES MySQL scripts, technical documentation, and other helpful background materials
 - » www.epa.gov/otaq/models/moves/
- Questions?
 - » Specific questions on a particular project analysis
 - Contact appropriate EPA Region or DOT field office
 - » General questions on PM hot-spot guidance and training
 - patulski.meg@epa.gov
 - » Technical questions about guidance document
 - conformity-hotspot@epa.gov